른록노트
[Elasticsearch] 데이터타입 본문
Field datatypesedit
Elasticsearch supports a number of different datatypes for the fields in a document:
Core datatypesedit
- string
text
andkeyword
- Numeric datatypes
long
,integer
,short
,byte
,double
,float
,half_float
,scaled_float
- Date datatype
date
- Boolean datatype
boolean
- Binary datatype
binary
- Range datatypes
integer_range
,float_range
,long_range
,double_range
,date_range
Complex datatypesedit
- Array datatype
- Array support does not require a dedicated
type
- Object datatype
object
for single JSON objects- Nested datatype
nested
for arrays of JSON objects
Geo datatypesedit
- Geo-point datatype
geo_point
for lat/lon points- Geo-Shape datatype
geo_shape
for complex shapes like polygons
Specialised datatypesedit
- IP datatype
ip
for IPv4 and IPv6 addresses- Completion datatype
completion
to provide auto-complete suggestions- Token count datatype
token_count
to count the number of tokens in a stringmapper-murmur3
murmur3
to compute hashes of values at index-time and store them in the index- Attachment datatype
- See the
mapper-attachments
plugin which supports indexingattachments
like Microsoft Office formats, Open Document formats, ePub, HTML, etc. into anattachment
datatype. - Percolator type
- Accepts queries from the query-dsl
Multi-fieldsedit
It is often useful to index the same field in different ways for different purposes. For instance, a string
field could be mapped as a text
field for full-text search, and as a keyword
field for sorting or aggregations. Alternatively, you could index a text field with the standard
analyzer, the english
analyzer, and the french
analyzer.
This is the purpose of multi-fields. Most datatypes support multi-fields via the fields
parameter.
참고사이트
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html
반응형
Comments